High Efficiency, Low-Cost Perovskite Solar Cell Modules Los Ala

LA-UR-15-22359

This document is approved for public release; further dissemination unlimited

High Efficiency, Low-Cost Perovskite Solar Cell Modules Los Alamos

High-efficiency (>15%) hybrid perovskite 3"x3" solar-cell modules with moisture stability

BACKGROUND & MOTIVATION

The problem: Need for high-efficiency low-cost solar-cell technology, that meets DOE SUNshot goal of producing electricity at 0.6c/kWh.

- State-of-the-art solar cell efficiency ~20% use high-purity, single-crystalline semiconductors like Silicon & GaAs grown using high-cost crystal growth techniques.
- · In contrast, efficiency of solution processed thin-film technology limited to 6-9% due to poor crystalline quality.
- · No current technology offers highefficiency at low-cost

INNOVATION

Discovery of solution-processed mmscale single-crystal growth of hybrid perovskites

- Ability to make mm-scale grains of single-crystal perovskite films with controlled thickness.
- Crystalline quality comparable to high quality semiconductors like Si & GaAs.
- Earth abundant material, with low-cost & easy to process

DESCRIPTION

Initial Results:

 Proof-of-concept perovskite solar cells with high-efficiency approaching ~18% demonstrated by team

Perovskite solar cell work at LANL (Nie-Mohite)

Enabling Technology:

· Ability to make inch-scale thin-films for Perovskites solar cell modules. (moisture stability not yet demonstrated)

Engineer Approaches:

(A) Development of 3"x3" solar module temperature controlled thin-film coating

- · Dr. blading technique: Drag solution on hot-substrate with controlled speed using 4" ultra-smooth blade
- Dip-coating: Pull substrate from solution maintained at desired temperature
- Spray coating: Use ultrasonic spray coater to deposit ultra-smooth films on hot-substrate

(B) Long-term moisture stability (encapsulation schemes)

- Hydrophobic polymer coatings e.g. PMMA, PDMS, etc.
- · Use glass-bonding encapsulation schemes.
- · Multilayer Graphene/reduced-Graphene Oxide films.

Current Technology Readiness Level (TRL) 3

 Proof-of-concept perovskite solar cells with efficiency approaching 18% demonstrated

UNCLASSIFIED

ANTICIPATED IMPACT

Perovskite solar cells have the ability to greatly increase the adoption of solar power technology:

- · Low cost as much as 75% less than current Si solar cells
- · High efficiency equal to and possibly slightly greater than Si solar cell technology
- · Realization of solar panels for gridbased electricity generation
- · Increased adoption of solar cell technology across the world

PATH FORWARD

Project Goal:

 Achieve perovskite solar cells modules with >15% efficiency & stability

Next steps year 1:

- Develop 3"x3" module thin-films with controlled thickness using Dr. blading, dip-coating & spray coating
- · Device performance Optimization: Efficiency >15% on 3"x3" modules

Next steps year 2:

- · Encapsulation schemes using PMMA, glass-bonding and/or multilayer graphene
- · Test moisture stability & performance outdoor environment

Potential End Users:

Solar power companies

Point of Contact: Aditya Mohte, MPA-11, 505-665-2246, amohite@lanl.gov